728x90
import sklearn
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_breast_cancer
cancer=load_breast_cancer()
cancer_df = pd.DataFrame(data=cancer.data, columns=cancer.feature_names)
cancer_df['target'] = cancer.target
cancer_df.head()
from sklearn.preprocessing import StandardScaler
std = StandardScaler()
std.fit(X_train)
X_train_scaled = std.transform(X_train)
X_test_scaled = std.transform(X_test)
dtc.fit(X_train_scaled, y_train)
print('모델의 정확도 :', round(dtc.score(X_test_scaled, y_test), 4))
모든 피처들을 평균이 0, 분산이 1인 정규분포를 갖도록 만들어 표준화한다.
728x90
'AI' 카테고리의 다른 글
결합 확률 분포, 주변 확률 분포 (0) | 2023.08.14 |
---|---|
KNN(K-Nearest Neighbors) 알고리즘 (0) | 2023.07.30 |
데이터 시각화: pandas, matplotlib (0) | 2023.07.22 |
활성화 함수(activation function) (0) | 2023.07.03 |
인공 신경망(Artificial Neural Network, ANN) (0) | 2023.07.01 |